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Free layers of liquid - particularly liquid films accelerated by a gas pressure gra- 
dient - are unstable. Such instability (of the Rayleigh-Taylor type) was studied theoreti- 
cally in [I] for plane films of an ideal fluid. The studies [2, 3] examined features of the 
development of perturbations in the case of plane films of Newtonian and rheologically com- 
plex fluids - especially viscoelastic polymers - undergoing acceleration by a gas pressure 
gradient. The investigations [4, 5] experimentally and theoretically studied the instability 
of cylindrical water films expanded by gas under high pressure in a cavity. The results ob- 
tained here showed that with relatively small gas pressure gradients, destruction of the 
cylindrical layer of liquid occurs as a result of the development of perturbations (Rayleigh- 
Taylor type). On the other hand, with an increase in the pressure gradient, destruction of 
the water films comes to be associated with cavitation occurring after reflection of an un- 
loading wave from an external free surface (expansion of the cylindrical volume of liquid in 
[4, 5] was initiated by the electrical explosion of an axial wire or explosive, creating a 
shock wave). This type of film failure is not typical of liquid polymer films, since these 
liquids are capable of supporting large tensile stresses without loss of continuity. The 
dynamics of expanded cylindrical films of polymer liquids in the absence of perturbations was 
examined in [6]. 

The goal of the present study is to theoretically investigate the instability of cylin- 
drical films of polymer liquids expanded by gas at high pressure in a cavity. The findings 
may have application in the common practices of expansion and thermoforming of plastics [7]. 
If these processes are to be intensified and product quality is to be improved (such as by 
eliminating variations in wall thickness), then it will be necessary to have an understanding 
of the mechanism by which perturbations develop in polymer films undergoing expansion by a 
high-pressure gas in a cavity. 

i. Formulation of the Problem of Film Instability. We will examine a cylindrical 
liquid film. Part of the cross section of this film is shown in Fig. la: the dashed lines 
show the free surfaces in the undisturbed case, the solid lines show the same surfaces in 
the presence of perturbations; the dot -dash lines represent the middle surfaces in both 
cases. We will study the plane problem, assuming that the parameters of the disturbed cylin- 
drical film vary only in the azimuthal direction. We will use ~ to denote the polar angle, 
R0(t) to denote the radius of the undisturbed middle surface, and R(% t) to represent the 
radius of the middle surface in the presence of perturbations. Rayleigh-Taylor instability 
of a cylindrical film has the same cause as for a plane film [2, 3]. Flexural perturbations 
of the middle surface of the film and its thickness develop accordingly. The thinner sec- 
tions of the film, having less inertia, are bent in the direction of motion. This in turn 
leads to the appearance of a force caused by a drop in gas pressure and corresponding move- 
ment of the liquid from the regions in which the film is contracted to regions where the 
film is thickened. 

However, the instability of a cylindrical film has several features which differ from the 
instability of a plane film. The characteristic time of growth of perturbations t, ~ (h0/ 
a~ I/2 [2, 3] (ho anda ~ are the thickness and the acceleration oftheundisturbedfilm). In the 
case of an ideal fluid without surface tension 

a ~ : A P o / p k  o. (I.I) 

Here, p is the density of the liquid; AP 0 = P~ - P~ is the undisturbed gradient of the gas 
pressure on the film; P$ and P~ are the undisturbed gas pressures inside and outside and 
cavity. 

For a plane film accelerated by a constant pressure gradient, t, = const throughout the 
period of perturbation growth. On the other hand, as a result of the mass conservation 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 104-110, May-June, 1988. Original article submitted January 29, 1987. 

0021-8944/88/2903-0409512.50 �9 1988 Plenum Publishing Corporation 409 



0 8 

Fig. i 

condition, for an expanded cu film h0 N R~ I, Ap 0 N p~ ~Rj2• the present case of 
adiabatic expansion of gas in a cylindrical cavity (u is the adiabatic exponent). Thus, by 
virtue of (i.i), t, NR~ -I and, since ~ > i, in the expansion of a cylindrical film of an 
ideal fluid free of surface tension, the rate of growth of perturbations is maximal in the 
initial stage of motion at small values of R 0. As the cylindrical film expands, gas pres- 
sure in the cavity decreases. This leads to slowing of perturbation growth. 

As was shown in [2, 3], the presence of longitudinal elastic stresses associated with 
preliminary tension of the plane polymer film of liquid helps slow the development of pertur- 
bations. In a cylindrical film, the longitudinal elastic stresses (in the azimuthal direc- 
tion) are accumulated directly during expansion of the film. Thus, this factor - absent for 
unstretched planar films - also helps slow the growth of disturbances in cylindrical films 
and, as shown below, may lead to complete suppression of perturbations. 

As in [2, 3], we will conduct our theoretical study of Rayleigh-Taylor instability in 
the thin-film approximation, averaging all of the parameters over the film thickness. We 
introduce a coordinate system connected with the disturbed middle surface of the film. The 
longitudinal (azimuthal) direction in the film is indicated by the unit vector of a tangent 
er to a section of the middle surface of the film, while the transverse direction is indi- 
cated by the unit vector of a normal ~e2 (Fig. la). We use the general equations of the dy- 
namics of thin films [8, 9] to obtain the equations of continuity and momentum in the form 

ahn 0 [h (Ve --  Ue)] = 0, 
ot + -ff  (1.2) 

OpVhRot + ~0 [pVh (V~ - -  U~)] -- o-~ (N,e~) + P , R ,  

where h is the thickness of the film; V = d R / d t  is the absolute velocity of a liquid particle; 
U = 0R/0t is the translational velocity of the coordinate system; N, is the internal force 
in the film (in the azimuthal direction); P, is the force per unit length of the middle sur- 
face, connected with the gradient of gas pressure on the film; the subscript e denotes pro- 
jection on the tangent. 

We will introduce small perturbations of the radius of the middle surface and the thick- 
ness of the film ~ and X 

R(~, t) = Ro(t)[i + ~(T, t)], h(~, t) = ho(t)[i ~- %(T, t)] ( 1 . 3 )  

and the relative longitudinal velocity in the chosen coordinate system w = V e - Ue, which 
is also a small perturbation. 

We will subdivide the forces N, and P. into undisturbed and disturbed components, N, = 
N q-n, P,=P~-p (n and Pare small perturbations). It is interesting to examine the case 
of intensive expansion of the film, this expansion taking place over a period of time which 
is instantaneous compared to the relaxation time of the liquid. In such an instantaneous 
process, the points of contact of the macromolecules of the polymer behave in the same manner 
as the chemical cross-links in rubber macromolecules, while the rheological behavior of the 
fluid as a whole corresponds to non-Hookian behavior governed by the relation [I0] 

�9 ' = 2G(B - -  ~B-1). ( 1 . 4 )  

Here, T' is the deviator of the stress tensor; B is the Green tensor; G is the elastic modu- 
lus; ~ is a dimensionless rheological parameter. 

We will calculate N and n using (1.4). We will also calculate the forces P and p, 
which are connected with the gas pressure gradient in a manner similar to that for a plane 
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film [3]. We ignore perturbations of the pressure of the surrounding gas, which is permis- 
sible if the density of the gas in the cavity is more than one order less than the density 
of the liquid [2, 3]. Since we are studying concentrated polymer systems, the contribution 
of surface tension will also be negligible compared to the forces associated with entropic 
elasticity. As a result, in an approximation which is linear with respect to the perturba- 
tions, we use (1.2) to obtain the following equations of the problem of film instability 

h o = hoor-1 , 

_ _  . ~ _  _ _  R o  dV ~ pO+ __ pO 2G (1 -~- c~) (,.2 __ r-2)  r = - -  
dt ph o 9R o ' Boo' 

0% 05 i Ow O, 
o - r + w  + e--; o-+- = ( 1 . 5 )  

.ow dV o 05 (r  2 + 3r -2 )  + __J 2G (1 + ~) a% 
0"-~ -}- u; Ro dt Oq) pR o ~ - ~  

026-1- 2Vo 05 + 25 dV o + % dVo' pO+_po_5 + 2G(IA-, c*)(r 2 - r  ~-2) __026 -}-2G (l + a) (r 2 -b3r  -2)  Z, 
ot-~'~ R o ot ~ - s  -~o dt phoR ~ ~,R~ o~ ~ -- OR~ 

where h00 is the initial undisturbed thickness of the film; R00 is the undisturbed initial 
value of the radius of the cylindrical cavity of the film; V0(t) is the undisturbed rate of 
dispersion of the film. The first two equations express the continuity condition and the 
momentum balance for the undisturbed film, while the remaining three pertain to the 
disturbed motion. They represent the equation of continuity and projections of the momentum 
equation on a tangent and a normal to the middle surface of the film. 

The gas pressure in the cavity of the cylindrical film is determined by the relation 

P% = P~r -~" ( 1 . 6 )  

(p$0 is the initial gas pressure in the cavity). 

As in [6], we introduce the characteristic scale of velocity 

V poor 
+ oo ( 1 . 7 )  

v~ = ( •  1) 9hoo" 

Referring R 0 to Ro0, V 0 and w to v0x, and t to R00/v0i, with allowance for (1.6) we convert 
Eq. (1.5) to dimensionless form 

dr du x - t 2 T r  ( t  - -  r -4 )  - -  2P2r 
d'--~" = u, a d~ r2•  Q ' 

0)~ 08 OW 1 
o--T + ~-T + 7F  = O, 

a 06 (1 .8 )  u 0% 2r  ( i  + 3r o-7- + 2wl  7- + r aq~ 

f 

- -  ( 3 r - 4 )  %" 0~2 + T ~ . ~  + r + 0 ~ 8  2u 05 a5 ax7_= 2 T  (1 - -  r - s )  5 + a ~ ]  + 2 2  ( t  + 

PO . 2hoo (7 (t -~- a) wlvoi" tVol V o 
Here P2=ZIF.2, Q=--; T 2 ; w1=- 7, T=--; u= J .  

P%1 Roo Pro1 Roo %1 

The initial conditions for the undisturbed motion will be 

T = O, r = t~ u = O. ( 1 . 9 )  

2. Initial Stage of Film Expansion. As was shown in Part i, the rate of growth of per- 
turbations of a cylindrical film should be maximal at the beginning of its expansion. Thus, 
if the film is stable at the initial moments of expansion, then it will remain stable during 
all subsequent motion. We therefore focus our attention on the "rapid" instability at the 
initial moment of expansion. Assuming that the perturbations develop so rapidly that the 
undisturbed motion can be assumed "frozen," we find from (1.8) and (1.9) that 

a% 08 + am 1 Owl 05 0% 
a--T + ~ -  ~ - = 0 ,  -bT- + ao ~ -  = - -  8 T - -  o~' ( 2 . 1 )  

a ~ + a  o ( 5 + % )  8Tz ,  a o • 1 2P2 
01:2 O " 
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Representing the perturbations in the form (%, wl, 8) = (%0, wlo, ~)exp(?z~-is~) (the sub- 
script 0 denotes amplitudes, 7 denotes an increment, s = i, 2, ... represents the wave num- 
ber), we use (2.1) to obtain the dispersion equation 

?a _~ 8T(I + s~)y ~ + ao~(t6T - -  %) = 0. ( 2 . 2 )  

The only solution of this equation which can lead to instability is 

? = {-- 4T(t  + s ~) + [16T2(1 -[- se) 2 - -  aoS2(16T - -  ao) l t /~} t /2 .  ( 2 . 3 )  

At R00 ~ ~, Eqs. (2.2) and (2.3) will naturally change into the corresponding disper- 
sion equations obtained in [2, 3] for a plane film. 

Equation (2.3) will give a positive real value of 7 under the condition that 16T/a 0 < i. 
Thus, with satisfaction of this condition at the beginning of dispersion of the film, the 
perturbations will increase (the initial stage of expansion of the film will be unstable). 
On the other hand, with allowance for (2.2) and (2.3), the case 

~>t  ( i 6 G ( l + ~ ) h o o > i ) ,  A P o o = P ~ - - P ~  16T (2.4) 
a o APooRoo 

corresponds to neutral instability of the film (zero or purely imaginary values of ~). Thus, 
in a linear approximation, the initial stage of film expansion is stable if condition (2.4) 
is satisfied. In fact, a small perturbation 6 of the middle surface of the film corresponds 
to its tension by the same order of magnitude. Given a sufficiently large value of the 
elastic modulus (G and, accordingly, T) along the film (in the azimuthal direction), a fairly 
large elastic force develops. As is known [2, 3], this force is a stabilizing factor. 

It should be noted that, for a plane film, such stabilization may be realized just as a 
result of preliminary tension, since small flexural perturbations do not lead to elongation 
of its middle surface in a linear approximation. Inequality (2.4), as the stability condi- 
tion, is further supported by the results of numerical solution of system (1.8). Here, the 
probability of violation of the stability condition due to nonlinear effects is low due to 
the fact that such effects are manifest slowly. 

With an increase in s, the increment 7 monotonically increases in accordance with (2.3). 
At s ~ =, ~ approaches the asymptotic value 

i 6T /ao l l / 2  
= ~ / . ( 2 . 5 )  

The a s s u m p t i o n  o f  " r a p i d "  i n s t a b i l i t y  a t  t h e  b e g i n n i n g  o f  e x p a n s i o n  i s  v a l i d  o n l y  in  
t h e  c a s e  $ , / 4 ~ 0  ~ 1 ( t h e  c h a r a c t e r i s t i c  t i m e  o f  e x p a n s i o n  o f  t h e  f i l m  a t  t h e  i n i t i a l  s t a g e  
CR0 0 / ( dV0 /d t )  i s  much g r e a t e r  t h a n  t h e  c h a r a c t e r i s t i c  t i m e  o f  i n c r e a s e  in  t h e  p e r t u r b a t i o n s ) .  
A c c o r d i n g l y ,  t h e  f i n a l  a n a l y t i c a l  c o n d i t i o n  o f  " r a p i d "  i n s t a b i l i t y  w i l l  be 16T/a  0 ~ 2 / 3 .  

3. R e s u l t s  o f  N u m e r i c a l  S tudy  o f  I n s t a b i l i t y .  B e g i n n i n g  w i t h  a c e r t a i n  v a l u e  o f  t h e  
i n i t i a l  gas  p r e s s u r e  g r a d i e n t  AP00 and w i t h  f i x e d  v a l u e s  f o r  t h e  r e m a i n i n g  p a r a m e t e r s  o f  t h e  
l i q u i d  f i l m ,  c o n d i t i o n  ( 2 . 4 )  i s  v i o l a t e d ,  and we can e x p e c t  t h e  m a n i f e s t a t i o n  o f  g rowing  p e r -  
t u r b a t i o n s .  The r a t e  o f  i n c r e a s e  i n  t h e s e  p e r t u r b a t i o n s  changes  d u r i n g  t h e  e x p a n s i o n  o f  t h e  
f i l m  c a v i t y  as  a r e s u l t  o f  a r e d u c t i o n  in  gas  p r e s s u r e  P$ and t h e  d e v e l o p m e n t  o f  a z i m u t h a l  
e l a s t i c  s t r e s s e s  in  t h e  l i q u i d .  For  s m a l l  p e r t u r b a t i o n s ,  t h e s e  e f f e c t s  a r e  s t u d i e d  by numer-  
i c a l l y  s o l v i n g  s y s t e m  ( 1 . 8 ) .  R e p r e s e n t i n g  t h e  p e r t u r b a t i o n s  i n  t h e  fo rm (%, Wl, 8) : [ X o ( ~ ) ,  
--iWo(z), D0(T)] exp ( i s ~ ) , .  we find from (1.8) that 
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o _ a s D  ~ ( i  + --7s + 2 u. Wo __ --  2T 3r -4) sX  o = O, 

+ + Do 7 - -  2 r  ( t  - -  - -  + Xo - -  2T (1 + - ~  = 0. 

( 3 . 1 )  

Equations (3.1) were integrated numerically by the Kutta-Merson method together with 
the first two equations of (1.8). We assigned the following values to the parameters: • = 
1.4, P2 = 10-9, Q = 10-2. The values of s (natural numbers) were chosen from the interval 
[I, 2/Q]; Sma x = 2/Q = R00/h00 corresponds to the shortest wavelength of perturbation, equal 
to 2~h00 at �9 = 0. It makes no sense to perform calculations for perturbation wavelengths 
shorter than 2~h00, due to the use of equations of the longwave approximation (wavelength 

~ hoo ) .  

Without sacrifice of generality, along with the initial conditions for the undisturbed 
motion (1.9) we write the following compatibility conditions for the perturbations: 

~2 ~ aS2 
T = 0 ,  D o = t ,  X o =  Do, y2 + 8Ts2 

+ Do), dOo ~Do, W o  = - -  7 -  ( X o  d'---s = 

where ~ is determined from (2.3) with a prescribed wave number s. 

Figure ib shows the dependence of the amplitudes of flexural perturbations of the middle 
surface D o On time at T = 0.002; curve i corresponds to s = 5; 2) i0; 3) 20; 4) 40; 5) 80. 
In the given case, a0-----x--1. Thus, in accordance with the result obtained in the previous 
section, we can expect an increase in perturbations at T =0.002<a0/~6~--~-- I)/16 = 0.025. 
In fact, at the initial moments of time in Fig. Ib, the amplitude of the perturbations in- 
creases exponentially, and the rate of increase is greater, the greater the wave number s. 
However, radial expansion of the film is accompanied by an increase in the azimuthal stress 
in the film. This slows the increase in perturbations, and the amplitude of the latter be- 
gin to decrease. The oscillations in the amplitude of the perturbations in Fig. ib are con- 
nected with the competition between elastic and inertial forces typical of polymer liquids 
[ii]. The "damping" of these oscillations is connected not with dissipation (which is ab- 
sent) but with an increase in the azimuthal stress over time. The increment of the pertur- 
bations in the initial stage coincides with the quantity calculated by means of (2.3). 

For each wave number, the perturbations increase until attainment of a certain value 
D0m at ~ = ~m- Figure 2 shows the dependence of D0m and ~m on s (curves 1-4 - T = 0.004; 
0.006; 0.008; 0.01). The data for D0m is shown by solid lines, while the data for ~m is 
shown by dashed lines. It should be noted that the curves in Fig. 2 were drawn through a 
discrete set of theoretical points corresponding to integral values of s. It is evident 
that with a certain value s = s,, the maximum perturbation amplitude takes the greatest value 
D, with fixed T. At s < s,, D0m increases with an increase in s because - in accordance 
with (2.3) - the increment 7 increases. On the other hand, at s > s,, an increase in s cor- 
responds to an increase in the stabilizing effect of the azimuthal elastic stress. Here, 
both the time required to reach the maximum and the value of D0m decrease. The dependence 
of D, on T is shown by curves in different scales in Fig. 3. With an increase in T from 0 
to 0.025, the maximum perturbation amplitude rapidly decreases to D, = D0(0) = I. At T > 
a0/16 = 0.025, perturbations do not increase on a cylindrical film. This confirms that there 
is a region of stability (Part 2) and that inequality (2.4) is the stability condition. 
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The results of the calculations show that s, increases with a decrease in T. At T + 0, 
the theoretical points lie on a smooth curve s,(T); on the other hand, as T approaches the 
value a0/16 = 0.025, the relation s,(T) becomes a step function due to the discreteness of 
the values of the wave numbers. 

Figure 4 shows graphs of the dependence, on T, of the time r, and the degree of tension 
r, corresponding to the moment of attainment of the greatest amplitude De. As T + 0.025, 
r e § 1.37, and ~e + 1.46. The circles show theoretical points. Meanwhile, the relations 
re(T) and re(T) are step functions due to the discreteness of s; smoothing curves i and 2 
were drawn for the sake of clarity. 

Analysis of the results permits the conclusion that as T + 0, the characteristic scale 
of the perturbations s = 2~R0(te)/s* decreases from the greatest amplitude. 

The results obtained show that at each moment of time we can distinguish a perturbation 
with a wave number s t (different at each moment) and an amplitude having the maximum value 
DT. The wavelength of this perturbation s = 2~R0/s~ is the characteristic scale of the 
pattern of perturbations on the film at the given moment of time. The solid lines in Fig. 
5 pass through theoretical values of s T at different moments of time, while thedashed lines 
show the dependence of s t on r. Curves 1-4 correspond to T = 0.25"10-3; 0.5"10-s; 10-s; 
2-i0 -s It is evident that s increases with an increase in time. Figure 6 shows the rela- 
tion Dr(T) (with the same values of T as in Fig. 5). It is apparent that the maximum ampli- 
tude of the flexural perturbations at the beginning of motion increases almost exponentially. 
The amplitude then begins to decrease relatively slowly. 

As a result of the increase in perturbations, failure of the film takes place at the 
moment of time T I, when X(t I) = -i. The characteristic size of the segments over which the 
film breaks down is s = 2~R0(tz)/S~(Tl)" 

We thank V. M. Entov for his useful comments during the investigation. 
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